An Adaptive Live Media Streaming Architecture

Lambros Lambrinos

Ellie Demetriou

Dept. of Communication and Internet Studies
Cyprus University of Technology

lambros.lambrinos@cut.ac.cy
ellie.demetriou@cut.ac.cy
Presentation Outline

- Introduction
 - Background
 - Streaming
- Live Media Streaming Modules
- Live Media Streaming Architecture
- Conclusions & Future Work
Introduction

- Increase in Internet connectivity speeds
- Enable streaming of quality multimedia data
- Unpredictable network conditions
- Propose an architecture that dynamically change to provide QoS at minimal cost
Background

- **Unicast Distribution**
 - One-to-One Connection
 - Increase Server Workload
 - Increase Network Traffic

- **IP Multicast**
 - Better Network Resources Utilization
 - Routers Modification
 - Lacks on Access Control and Security
Background

- Hybrid Solutions
 - Combine Unicast and Multicast Techniques
- Application Layer Multicast
 - Reflector/Relay
Streaming

- **Aim**
 - Stream live events to multiple clients

- **Requirements**
 - Scalability
 - High QoS
 - Simple client model

- **Idea**
 - Middleware infrastructure
 - Continuous monitoring of client feedback
 - Dynamic Architecture Modification
Live Media Streaming Modules

- **SAP/RTSP Server**
 - Announce the availability of new media streams
 - Handle (at an initial stage) client join requests

- **Media Server (MS)**
 - Receive the media stream from the original source
 - Forward it to the Stream Relays

- **Stream Relay (SR)**
 - Forward the media stream from the media server to a given list of clients
 - Process client’s feedback
Live Media Streaming Modules

- **Resource Manager (RM)**
 - Generate and maintenance the network topology
 - Decide to which SR a new client should be allocated
 - Decide to which SR an existing client should be moved
 - Update MS client list

- **Client**
 - Interoperate with other components of the system via open standards
 - Request and Receive media data
 - Send feedback about the stream quality
Live Media Streaming Architecture

1. SAP Message
2. RTSP Request
3. Client IP/Port and Requested Media
4. Closest SRs
5. SRs and Response Time
6. Client IP
7. SR address in order to forward Media Data
8. RTP Media Stream
9. RTP: media stream
10. RTCP: Service Feedback
11. Client with Packet loss or Delay over a certain Threshold
Conclusions & Future Work

- Remove Network Traffic from Core to Edge
- Improve Client Experience
- Implement Proposed Architecture - utilising existing standards and software
 - Define Protocols
 - Design new optimized Algorithms
- Deployment of the architecture implementation over the Grid infrastructure
Thank You